|  e-ISSN: 2618-589X

Original article | TAY Journal 2022, Vol. 6(1) 77-98

Matematik ve Fen Bilimleri Öğretmenlerinin STEM Eğitimine Yönelik Tutumlarının Çeşitli Değişkenler Bağlamında İncelenmesi

Kaan DEMİRKOL, Büşra KARTAL & Adem TAŞDEMİR

pp. 77 - 98   |  DOI: https://doi.org/10.29329/tayjournal.2022.491.04   |  Manu. Number: tay journal.2022.004

Published online: June 30, 2022  |   Number of Views: 22  |  Number of Download: 243


Abstract

Öğrencilerin problem çözme ve üst düzey düşünme becerilerini geliştirme, STEM mesleklerine yönelik ilgilerini ve STEM disiplinlerindeki başarılarını arttırma gibi STEM eğitimi hedeflerine ulaşılması için öğretmenlerin yeterli bilgi, güçlü inanç ve olumlu tutumlara sahip olmaları beklenmektedir. Tutumlar, STEM gibi yeni ve yenilikçi yaklaşımları sınıflarında kullanıp kullanmayacaklarını etkileyen en önemli faktörler arasındadır. Bu çalışmada, matematik ve fen bilimleri öğretmenlerinin STEM eğitimine yönelik tutumları betimlenmiş ve cinsiyet, branş ve mesleki deneyim değişkenlerine göre farklılaşıp farklılaşmadığı incelenmiştir. Araştırmaya 160 öğretmen katılmıştır ve veriler “STEM Tutum Ölçeği” kullanılarak toplanmıştır. Veriler betimsel ve ilişkisel analizler kullanılarak analiz edilmiştir. Betimsel analiz sonuçları katılımcıların STEM etkinliklerine yönelik olumlu tutumlara sahip olduklarını ancak ders planlamaya yönelik tutumlarının kararsızım düzeyinde olduğunu göstermiştir. MANOVA testi ile cinsiyet, branş ve mesleki deneyim bağımsız değişkenlerine göre STEM tutumlarının farklılıkları incelenmiş ve yalnızca cinsiyetin tek başına tutumlardaki varyansın %13’ünü temsil ettiği sonucuna ulaşılmıştır. Ayrıca cinsiyet*branş ve cinsiyet*mesleki deneyim değişkenlerinde anlamlı farklılıklar olduğu görülmüştür. 11-15 yıl mesleki deneyime sahip kadın öğretmenler haricindeki kadın öğretmenlerin ders planlamaya yönelik tutum ortalamaları erkek öğretmenlerin ortalamalarından daha düşüktü. Kadın matematik öğretmenleri ve erkek fen bilimleri öğretmenleri ise STEM etkinliklerine yönelik en yüksek tutum ortalamasına sahipti. Öğretmenlerin ders planlamaya yönelik tutumlarının geliştirilmesi için profesyonel gelişim programlarının tasarlanması önerilmiştir.

Keywords: STEM eğitimi, Tutum, Matematik öğretmenleri, Fen bilimleri öğretmenleri, Cinsiyet, Mesleki deneyim


How to Cite this Article?

APA 6th edition
DEMIRKOL, K., KARTAL, B. & TASDEMIR, A. (2022). Matematik ve Fen Bilimleri Öğretmenlerinin STEM Eğitimine Yönelik Tutumlarının Çeşitli Değişkenler Bağlamında İncelenmesi . TAY Journal, 6(1), 77-98. doi: 10.29329/tayjournal.2022.491.04

Harvard
DEMIRKOL, K., KARTAL, B. and TASDEMIR, A. (2022). Matematik ve Fen Bilimleri Öğretmenlerinin STEM Eğitimine Yönelik Tutumlarının Çeşitli Değişkenler Bağlamında İncelenmesi . TAY Journal, 6(1), pp. 77-98.

Chicago 16th edition
DEMIRKOL, Kaan, Busra KARTAL and Adem TASDEMIR (2022). "Matematik ve Fen Bilimleri Öğretmenlerinin STEM Eğitimine Yönelik Tutumlarının Çeşitli Değişkenler Bağlamında İncelenmesi ". TAY Journal 6 (1):77-98. doi:10.29329/tayjournal.2022.491.04.

References
  1. Ajzen, I. (1988). Attitudes, personality and behavior. The Dorsey Press. [Google Scholar]
  2. Aldahmash, A. H., Alamri, N. M., Aljallal, M. A., & Bevins, S. (2019). Saudi Arabian science and mathematics teachers' attitudes toward integrating STEM in teaching before and after participating in a professional development program. Cogent Education, 6(1), 1-21. https://doi.org/10.1080/2331186X.2019.1580852 [Google Scholar] [Crossref] 
  3. Al Salami, M. K., Makela, C. J., & de Miranda, M. A. (2017). Assessing changes in teachers’ attitudes toward interdisciplinary STEM teaching. International Journal of Technology and Design Education, 27(1), 63-88. https://doi.org/10.1007/s10798-015-9341-0 [Google Scholar] [Crossref] 
  4. Appleton, K. (2003). How do beginning primary school teachers cope with science? Toward an understanding of science teaching practice. Journal for Research in Science Teaching, 33, 1-25. https://doi.org/10.1023/A:1023666618800 [Google Scholar] [Crossref] 
  5. Asia Society. (2006). Math and science education in a global age: What the U.S. can learn from China. Retrieved on Dec 25, 2021, from http://www.asiasociety.org/files/math-science-china.pdf [Google Scholar]
  6. Aydın, G., Saka, M., & Guzey, S. (2017). 4-8. sınıf öğrencilerinin fen, teknoloji, mühendislik, matematik (STEM=FETEMM) tutumlarının incelenmesi. Mersin University Journal of the Faculty of Education, 13(2), 787-802. https://doi.org/10.17860/mersinefd.290319 [Google Scholar] [Crossref] 
  7. Azgin, A. O. (2019). İlkokulda STEM: Öğrencilerin kariyer ilgileri ve tutumları ile öğretmenlerin yönelimleri (Tez No. 545023). [Yüksek Lisans Tezi, Muğla Sıtkı Koçman Üniversitesi], YÖK Tez Merkezi. [Google Scholar]
  8. Bahar, A., & Adiguzel, T. (2016). Analysis of factors influencing interest in STEM career: Comparison between American and Turkish high school students with high ability. Journal of STEM Education: Innovations and Research, 17(3), 64-69. [Google Scholar]
  9. Balka, K. (2011). Open source product development: The meaning and relevance of openness. Springer Science & Business Media. [Google Scholar]
  10. Barak, M. (2014). Closing the gap between attitudes and perceptions about ICT-enhanced learning among pre-service STEM teachers. Journal of Science Education and Technology, 23(1), 1-14. https://doi.org/10.1007/s10956-013-9446-8 [Google Scholar] [Crossref] 
  11. Büyüköztürk, Ş. (2020). Sosyal bilimler için veri analizi el kitabı: İstatistik, araştırma deseni, SPSS uygulamaları ve yorum (28. Baskı). Pegem-A. [Google Scholar]
  12. Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö.E., Karadeniz, Ş., & Demirel, F. (2021). Bilimsel araştırma yöntemleri (30. Baskı). Pegem-A. [Google Scholar]
  13. Cerinsek, G., Hribar, T., Glodez, N., & Dolinsek, S. (2013). Which are my future career priorities and what influenced my choice of studying science, technology, engineering or mathematics? Some insights on educational choice—case of Slovenia. International Journal of Science Education, 35(17), 2999-3025. https://doi.org/10.1080/09500693.2012.681813 [Google Scholar] [Crossref] 
  14. Chachashvili-Bolotin, S., Milner-Bolotin, M., & Lissitsa, S. (2016). Examination of factors predicting secondary students’ interest in tertiary STEM education. International Journal of Science Education, 38(3), 366-390. https://doi.org/10.1080/09500693.2016.1143137 [Google Scholar] [Crossref] 
  15. Chia, P. L., & Maat, S. M. (2018). An exploratory study of teachers' attitudes towards integration of STEM in Malaysia. International Journal of Electrical Engineering and Applied Sciences (IJEEAS), 1(1), 45-50. [Google Scholar]
  16. Christensen, R., Knezek, G., & Tyler-Wood, T. (2015). A retrospective analysis of STEM career interest among mathematics and science academy students. International Journal of Learning, Teaching and Educational Research, 10(1), 45-58. [Google Scholar]
  17. Cohen, L., Manion, L., & Morrison, K. (2017). Research methods in education (8th Ed.). Routledge. [Google Scholar]
  18. Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Pearson Education. [Google Scholar]
  19. Darling-Hammond, L., & McLaughlin, M.W. (1995). Policies that support professional development in an era of reform. Phi Delta Kappan, 76(8), 597–604. https://doi.org/10.1177%2F003172171109200622 [Google Scholar] [Crossref] 
  20. Davis, K. S. (2003). “Change is hard”: What science teachers are telling us about reform and teacher learning of innovative practices. Science Education, 87(1), 3-30. https://doi.org/10.1002/sce.10037 [Google Scholar] [Crossref] 
  21. Deemer, S. (2004). Classroom goal orientation in high school classrooms: Revealing links between teacher beliefs and classroom environments. Educational Research, 46, 73-90. https://doi.org/10.1080/0013188042000178836 [Google Scholar] [Crossref] 
  22. Dong, Y., Wang, J., Yang, Y., & Kurup, P. M. (2020). Understanding intrinsic challenges to STEM instructional practices for Chinese teachers based on their beliefs and knowledge base. International Journal of STEM Education, 7(1), 1-12. https://doi.org/10.1186/s40594-020-00245-0 [Google Scholar] [Crossref] 
  23. Falk, J. H., Dierking, L. D., Staus, N. L., Wyld, J. N., Bailey, D. L., & Penuel, W. R. (2016). The synergies research–practice partnership project: A 2020 vision case study. Cultural Studies of Science Education, 11(1), 195-212. https://doi.org/10.1007/s11422-015-9716-2 [Google Scholar] [Crossref] 
  24. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. https://doi.org/10.3758/BF03193146 [Google Scholar] [Crossref] 
  25. Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education. (8th Edition). McGraw-Hill. [Google Scholar]
  26. Furner, J., & Kumar, D. (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science and Technology, 3(3), 185-189. https://doi.org/10.12973/ejmste/75397 [Google Scholar] [Crossref] 
  27. Goodpaster, K. P., Adedokun, O. A., & Weaver, G. C. (2012). Teachers’ perceptions of rural STEM teaching: Implications for rural teacher retention. The Rural Educator, 33(3), 9-22. https://doi.org/10.35608/ruraled.v33i3.408 [Google Scholar] [Crossref] 
  28. Guskey, T. R. (2002). Does it make a difference? Evaluating professional development. Educational Leadership, 59(6), 45-51. https://uknowledge.uky.edu/edp_facpub/7 [Google Scholar]
  29. Herdem, K., & Ünal, İ. (2018). Analysis of studies about STEM education: A meta-synthesis study. Journal of Educational Sciences, 48(48), 145-163. https://doi.org/10.15285/maruaebd.381417 [Google Scholar] [Crossref] 
  30. Ho, M. K., Yang, H. J., & Yang, H. H. (2016). Design and verify an instrument of assessing attitude toward STEM teaching. International Journal of Education and Information Technologies, 10, 41-50. [Google Scholar]
  31. Hurley, M. (2001). Reviewing integrated science and mathematics: The search for evidence and definitions from new perspectives. School Science & Mathematics, 101(5), 259-268. https://doi.org/10.1111/j.1949-8594.2001.tb18028.x [Google Scholar] [Crossref] 
  32. Huziak‐Clark, T., Sondergeld, T., van Staaden, M., Knaggs, C., & Bullerjahn, A. (2015). Assessing the impact of a research‐based STEM program on STEM majors’ attitudes and beliefs. School Science and Mathematics, 115(5), 226-236. https://doi.org/10.1111/ssm.12118 [Google Scholar] [Crossref] 
  33. İnam, N. (2020). Öğretmenlere yönelik STEM tutum ölçeği geliştirme çalışması (Tez No. 627672). [Yüksek Lisans Tezi, Balıkesir Üniversitesi], YÖK Tez Merkezi. [Google Scholar]
  34. Kalaycı, Ş. (2010). SPSS uygulamalı çok değişkenli istatistik teknikleri. Asil. [Google Scholar]
  35. Kartal, B., & Tasdemir, A. (2021). Pre-service teachers’ attitudes towards STEM: Differences based on multiple variables and the relationship with academic achievement. International Journal of Technology in Education (IJTE), 4(2), 200-228. https://doi.org/10.46328/ijte.58 [Google Scholar] [Crossref] 
  36. Kartal, B., Kartal, T., & Tasdemir, A. (2022). How and why teachers implement STEM? A journey to teacher beliefs and teaching practices. In A. Z. Macalalag, I. Sahin, J. Johnson, & A. Bicer (Eds.), Internalization of STEM education (pp. 41-74). ISTES Organization. [Google Scholar]
  37. Kartal, T., & Dilek, I. (2021). Preservice science teachers’ TPACK development in a technology-enhanced science teaching method course. Journal of Education in Science, Environment and Health, 7(4), 339-353. https://doi.org/10.21891/jeseh.994458 [Google Scholar] [Crossref] 
  38. Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 1-11. https://doi.org/10.1186/s40594-016-0046-z [Google Scholar] [Crossref] 
  39. Kier, M. W., Blanchard, M. R., Osborne, J. W., & Albert, J. L. (2014). The development of the STEM career interest survey (STEM-CIS). Research in Science Education, 44(3), 461-481. https://doi.org/10.1007/s11165-013-9389-3 [Google Scholar] [Crossref] 
  40. Knowles, J., Kelley, T., & Holland, J. (2018). Increasing teacher awareness of STEM careers. Journal of STEM Education, 19(3), 47-55. [Google Scholar]
  41. Kurup, P. M., Li, X., Powell, G., & Brown, M. (2019). Building future primary teachers’ capacity in STEM: Based on a platform of beliefs, understandings and intentions. International Journal of STEM Education, 6(1), 1-14. https://doi.org/10.1186/s40594-019-0164-5 [Google Scholar] [Crossref] 
  42. Lee, M. H., Hsu, C. Y., & Chang, C. Y. (2019). Identifying Taiwanese teachers' perceived self-efficacy for science, technology, engineering, and mathematics (STEM) Knowledge. The Asia-Pacific Education Researcher, 28(1), 15-23. https://doi.org/10.1007/s40299-018-0401-6 [Google Scholar] [Crossref] 
  43. Lewitt, K. E. (2002). An analysis of elementary teachers' beliefs regarding the teaching and learning of science. Science Education, 86 (1), 1-22. https://doi.org/10.1002/sce.1042 [Google Scholar] [Crossref] 
  44. Lin, K. Y., & Williams, P. J. (2016). Taiwanese preservice teachers’ science, technology, engineering, and mathematics teaching intention. International Journal of Science and Mathematics Education, 14(6), 1021-1036. https://doi.org/10.1007/s10763-015-9645-2 [Google Scholar] [Crossref] 
  45. Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM Education, 6(2), 1-16. https://doi.org/10.1186/s40594-018-0151-2 Moore, T. J., & Smith, K. A. (2014). Advancing the state of the art of STEM integration. Journal of STEM Education: Innovations and Research, 15(1), 5-10. [Google Scholar] [Crossref] 
  46. Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In S. Purzer, J. Strobel, & M. E. Cardella (Eds.), Engineering in pre-college settings: synthesizing research, policy, and practices (pp. 35–60). Purdue University Press. [Google Scholar]
  47. Nadelson, L. S., & Seifert, A. L. (2017). Integrated STEM defined: Contexts, challenges, and the future. The Journal of Educational Research, 110(3), 221-223. https://doi.org/10.1080/00220671.2017.1289775 [Google Scholar] [Crossref] 
  48. Nadelson, L. S., Callahan, J., Pyke, P., Hay, A., Dance, M., & Pfiester, J. (2013). Teacher STEM perception and preparation: Inquiry-based STEM professional development for elementary teachers. Journal of Educational Research, 106(2), 157-168. https://doi.org/10.1080/00220671.2012.667014 [Google Scholar] [Crossref] 
  49. Nadelson, L. S., Seifert, A. L., & Sias, C. (2015). To change or not to change: Indicators of K-12 teacher engagement in innovative educational practices. International Journal of Innovation in Education, 3(1), 45-61. [Google Scholar]
  50. Oner, A. T., Navruz, B., Biçer, A., Peterson, C. A., Capraro, R. M., & Capraro, M. M. (2014). T-STEM academies’ academic performance examination by education service centers: A longitudinal study. Turkish Journal of Education, 3(4), 40-51. https://doi.org/10.19128/turje.181091 [Google Scholar] [Crossref] 
  51. Pallant, J. (2020). SPSS survival manual: A step by step guide to data analysis using IBM SPSS (7th Ed.). Open University Press. [Google Scholar]
  52. Regan, E., & DeWitt, J. (2015). Attitudes, interest and factors influencing STEM enrolment behaviour: An overview of relevant literature. In Henriksen, E. K., Dillon, J., & Ryder, J. (Eds.). Understanding student participation and choice in science and technology education (p.p. 63-88). Springer. [Google Scholar]
  53. Rimm-Kaufman, S. E., & Sawyer, B. E. (2004). Primary-grade teachers' self-efficacy beliefs, attitudes toward teaching, and discipline and teaching practice priorities in relation to the" responsive classroom" approach. The Elementary School Journal, 104(4), 321-341. https://doi.org/10.1086/499756 [Google Scholar] [Crossref] 
  54. Rockland, R., Bloom, D. S., Carpinelli, J., Burr-Alexander, L., Hirsch, L. S., & Kimmel, H. (2010). Advancing the ‘‘E’’ in K-12 STEM education. Journal of Technology Studies, 36(1), 53-64. https://doi.org/10.21061/jots.v36i1.a.7 [Google Scholar] [Crossref] 
  55. Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20-26. http://hdl.handle.net/10919/51616 [Google Scholar]
  56. Song, H., & Zhou, M. (2021). STEM teachers’ preparation, teaching beliefs, and perceived teaching competence: A multigroup structural equation approach. Journal of Science Education and Technology, 30(3), 394-407. https://doi.org/10.1007/s10956-020-09881-1 [Google Scholar] [Crossref] 
  57. Stohlmann, M. S., Moore, T. J., & Cramer, K. (2013). Preservice elementary teachers’ mathematical content knowledge from an integrated STEM modelling activity. Journal of Mathematical Modelling and Application, 1(8), 18-31. [Google Scholar]
  58. Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research, 2(1), 28-34. https://doi.org/10.5703/1288284314653 [Google Scholar] [Crossref] 
  59. Tabachnick, B. G., & Fidel, L. S. (2019). Using multivariate statistics (7th Ed.). Pearson. [Google Scholar]
  60. Thibaut, L., Knipprath, H., Dehaene, W., & Depaepe, F. (2018). The influence of teachers’ attitudes and school context on instructional practices in integrated STEM education. Teaching and teacher education, 71, 190-205. https://doi.org/10.1016/j.tate.2017.12.014 [Google Scholar] [Crossref] 
  61. Thibaut, L., Knipprath, H., Dehaene, W., & Depaepe, F. (2019). Teachers’ attitudes toward teaching integrated STEM: The impact of personal background characteristics and school context. International Journal of Science and Mathematics Education, 17(5), 987-1007. https://doi.org/10.1007/s10763-018-9898-7 [Google Scholar] [Crossref] 
  62. Tseng, K. H., Chang, C. C., Lou, S. J., & Chen, W. P. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment. International Journal of Technology and Design Education, 23(1), 87-102. https://doi.org/10.1007/s10798-011-9160-x [Google Scholar] [Crossref] 
  63. Wahono, B., & Chang, C. Y. (2019). Development and validation of a survey instrument (AKA) towards attitude, knowledge and application of STEM. J. Balt. Sci. Educ, 18(1), 63-76. https://doi.org/10.33225/jbse/19.18.63 [Google Scholar] [Crossref] 
  64. Wang, M. T., & Degol, J. (2013). Motivational pathways to STEM career choices: Using expectancy–value perspective to understand individual and gender differences in STEM fields. Developmental review, 33(4), 304-340. https://doi.org/10.1016/j.dr.2013.08.001 [Google Scholar] [Crossref] 
  65. Wang, H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research (J-PEER), 1(2), Article 2. https://doi.org/10.5703/1288284314636 [Google Scholar] [Crossref] 
  66. Xie, Y., Fang, M., & Shauman, K. (2015). STEM education. Annual review of sociology, 41, 331-357. https://doi.org/10.1146/annurev-soc-071312-145659 [Google Scholar] [Crossref]