|  e-ISSN: 2618-589X

Original article | TAY Journal 2022, Vol. 6(2) 207-251

Investigation of STEM Approach Applications Based on Model Eliciting Activities in Primary School 4th Grade Mathematics Lessons of Pre-Service Classroom Teachers

Samet DEMİR & Metin DEMİR

pp. 207 - 251   |  DOI: https://doi.org/10.29329/tayjournal.2022.510.04   |  Manu. Number: tay journal.2022.009

Published online: December 30, 2022  |   Number of Views: 168  |  Number of Download: 458


Abstract

In this research, it is aimed to examine how the pre-service classroom teachers apply the STEM approach applications based on model eliciting activities that they designed themselves in primary school 4th grade mathematics course. In the research, the basic qualitative research design was used. The research was carried out in a public primary school in a province in the Aegean region within the scope of Teaching Practice I course in the fall semester of the 2019-2020 academic year. 4 of the 8 participants took part in the research as event practitioners and the other 4 as observers. Practitioner participants designed and implemented 3 STEM approach applications based on model eliciting activities implementation plans. At the end of each activity, semi-structured interviews were held with the practitioners, and when all the activities were finished, with the observer participants, and written opinions of 4th grade primary school students were obtained through structured forms. As a result of the analysis of the observations and interviews, it is seen that the participants completed the STEM approach applications based on model eliciting activities in 6 stages, each stage has a flexible structure that can be switched between each other, they have the motivation to implement the activities despite their lack of experience, and in general, each participant completes the process. When only the opinions of the participants was analyzed, it was concluded that despite the difficulties they experienced, they were willing to apply the STEM approach based on model eliciting activities in their professional lives, and that the students' interest and motivation towards the applications increased, and that, apart from some other skills, students gained cooperation, communication, creativity, and critical thinking skills.

Keywords: STEM approach applications based on model eliciting activities, prospective classroom teacher, STEM education approach


How to Cite this Article?

APA 6th edition
DEMIR, S. & DEMIR, M. (2022). Investigation of STEM Approach Applications Based on Model Eliciting Activities in Primary School 4th Grade Mathematics Lessons of Pre-Service Classroom Teachers . TAY Journal, 6(2), 207-251. doi: 10.29329/tayjournal.2022.510.04

Harvard
DEMIR, S. and DEMIR, M. (2022). Investigation of STEM Approach Applications Based on Model Eliciting Activities in Primary School 4th Grade Mathematics Lessons of Pre-Service Classroom Teachers . TAY Journal, 6(2), pp. 207-251.

Chicago 16th edition
DEMIR, Samet and Metin DEMIR (2022). "Investigation of STEM Approach Applications Based on Model Eliciting Activities in Primary School 4th Grade Mathematics Lessons of Pre-Service Classroom Teachers ". TAY Journal 6 (2):207-251. doi:10.29329/tayjournal.2022.510.04.

References
  1. Acar, D. (2018). FeTeMM eğitiminin ilkokul 4. sınıf öğrencilerinin akademik başarı, eleştirel düşünme ve problem çözme becerisi üzerine etkisi [Yayınlanmamış Doktora Tezi]. Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara. [Google Scholar]
  2. Acar, D., Tertemiz, N., & Taşdemir, A. (2018). The effects of STEM training on the academic achievement of 4th graders in science and mathematics and their views on STEM training. International Electronic Journal of Elementary Education, 10(4), 505-513. https://doi.org/10.26822/iejee.2018438141. [Google Scholar] [Crossref] 
  3. Afriana, J., Permanasari, A., & Fitriani, A. (2016). Project based learning integrated to STEM to enhance elementary school's students scientific literacy. Jurnal Pendidikan IPA Indonesia, 5(2), 261-267. https://doi.org/ 10.15294/jpii.v5i2.5493. [Google Scholar] [Crossref] 
  4. Akgündüz, D. ve Akpınar, B. C. (2018). Okul öncesi eğitiminde fen eğitimi temelinde gerçekleştirilen STEM uygulamalarının öğrenci, öğretmen ve veli açısından değerlendirilmesi. Yaşadıkça Eğitim Dergisi, 32(1), 1-26. https://hdl.handle.net/11413/5460. [Google Scholar]
  5. Alumbaugh, K. M. (2015). The perceptions of elementary STEM schools in missouri [Unpublished doctoral dissertation]. Lindenwood University, Missouri. [Google Scholar]
  6. Arık, S. ve Benli Özdemir, E. (2019). En güçlü, en uzun ve en güzel iskelet benim iskeletim: Bir STEAM etkinliği. ILTER Congress, (108-121), Amasya. https://www.researchgate.net/publication/338113172_ En_Guclu_En_Uzun_ve_En_Guzel_Iskelet_Benim_Iskeletim_Bir_STEAM_Etkinligi [Google Scholar]
  7. Aydın, E. ve Derin, G. (2018). STEM ve matematik eğitimi. İçinde K. A. Kırkıç ve E. Aydın (Ed.). Merhaba STEM: Yenilikçi bir öğretim yaklaşımı. (s. 27-38). Konya: Eğitim Yayınevi. [Google Scholar]
  8. Aydın-Günbatar, S. ve Tabar, V. (2019). Türkiye’de gerçekleştirilen STEM araştırmalarının içerik analizi. YYÜ Eğitim Fakültesi Dergisi, 16(1), 1054-1083. https://doi.org/10.23891/efdyyu.2019.153. [Google Scholar] [Crossref] 
  9. Azgın, A. O. ve Şenler, B. (2019). İlkokulda STEM: Öğrencilerin kariyer ilgileri ve tutumları. Journal of Computer and Education Research, 7(13), 213-232. https://doi.org/10.18009/jcer.538352. [Google Scholar] [Crossref] 
  10. Becker, K. H., & Park, K. (2011). Integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students’ learning: A meta-analysis. Journal of STEM Education, 12(5), 23-37. https://www.jstem.org/jstem/index.php/JSTEM/article /view/1509/1394. [Google Scholar]
  11. Berk, G. (2020). DMÖN destekli STEM uygulamalarının oran – orantı ve yüzdeler konusunda etkisinin incelenmesi [Yayınlanmamış Doktora Tezi]. Atatürk Üniversitesi Eğitim Bilimleri Enstitüsü, Erzurum. [Google Scholar]
  12. Bolat, Y. İ. (2020). STEM temelli matematik etkinliklerinin problem çözme ve bilgi işlemsel düşünme becerisi ile STEM alanlarına olan ilgiye katkılarının araştırılması [Yayınlanmamış Doktora Tezi]. Atatürk Üniversitesi Eğitim Bilimleri Enstitüsü, Erzurum. [Google Scholar]
  13. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa. [Google Scholar] [Crossref] 
  14. Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology And Engineering Teacher, 70(1), 30.https://www.proquest.com/openview/75bbe8b13bf3f54ebd755333ffd8621e/1?cbl=34845&pq-origsite=gscholar. [Google Scholar]
  15. Ching, Y. H., Yang, D., Wang, S., Baek, Y., Swanson, S., & Chittoori, B. (2019). Elementary school student development of STEM attitudes and perceived learning in a STEM integrated robotics curriculum. TechTrends, 63(5), 590-601. https://doi.org/10.1007/s11528-019-00388-0. [Google Scholar] [Crossref] 
  16. Creswell, J. W. & Plano Clark, V. L. (2015). Karma yöntem araştırmaları tasarımı ve yürütülmesi. (Çev. Ed. Y. Dede ve S. B. Demir). Ankara: Anı Yayıncılık. [Google Scholar]
  17. Dickerson, D. L., Eckhoff, A., Stewart, C. O., Chappell, S., & Hathcock, S. (2014). The examination of a pullout STEM program for urban upper elementary students. Research in Science Education, 44(3), 483-506. https://doi.org/10.1007/s11165-013-9387-5. [Google Scholar] [Crossref] 
  18. Doğan, İ. (2019). STEM etkinliklerinin 7. Sınıf öğrencilerinin bilimsel süreç becerilerine, fen ve STEM tutumlarına ve elektrik enerjisi ünitesindeki başarılarına etkisi [Yayınlanmamış Doktora Tezi]. Balıkesir Üniversitesi, Balıkesir. [Google Scholar]
  19. Doğan, M. F., Gürbüz, R., Çavuş-Erdem, Z. ve Şahin, S. (2018). STEM eğitimine geçişte bir araç olarak matematiksel modelleme. İçinde R. Gürbüz ve M. F. Doğan (Ed.). Matematiksel modellemeye disiplinler arası bakış: Bir STEM yaklaşımı (s. 43-56). Ankara: Pegem Akademi. [Google Scholar]
  20. Doğan, M. F., Gürbüz, R., Çavuş-Erdem, Z. & Şahin, S. (2019). Using mathematical modeling for ıntegrating STEM disciplines: A theoretical framework. Turkish Journal of Computer and Mathematics Education, 10(3), 628-653. https://doi.org/10.16949/turkbilmat.502007. [Google Scholar] [Crossref] 
  21. Elliott, B., Oty, K., McArthur, J. & Clark, B. (2001). The effect of an interdisciplinary algebra/science course on students' problem solving skills, critical thinking skills and attitudes towards mathematics. International Journal of Mathematical Education in Science and Technology, 32(6), 811-816. https://doi.org/10.1080/00207390110053784. [Google Scholar] [Crossref] 
  22. English, L. D. (2015). STEM: Challenges and opportunities for mathematics education. In Proceedings of the 39th Meeting of the International Group for the Psychology of Mathematics Education, 39(1), 4-18. https://eprints.qut.edu.au/87506/. [Google Scholar]
  23. English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(1), 5-24. https://doi.org/10.1007/s10763-017-9802-x. [Google Scholar] [Crossref] 
  24. Erbas, A. K., Kertil, M., Çetinkaya, B., Çakiroglu, E., Alacaci, C., & Bas, S. (2014). Mathematical modeling in mathematics education: Basic concepts and approaches. Educational Sciences: Theory and Practice, 14(4), 1621-1627. https://doi.org/10.12738/estp.2014.4.2039. [Google Scholar] [Crossref] 
  25. Eroğlu, S. ve Bektaş, O. (2016). STEM eğitimi almış fen bilimleri öğretmenlerinin STEM temelli ders etkinlikleri hakkındaki görüşleri. Eğitimde Nitel Araştırmalar Dergisi, 4(3), 43-67. https://dergipark. org.tr/en/pub/enad/issue/32043/356762. [Google Scholar]
  26. Estapa, A. T., & Tank, K. M. (2017). Supporting integrated STEM in the elementary classroom: a professional development approach centered on an engineering design challenge. International Journal of STEM Education, 4(1), 1-16. https://doi.org/10.1186/s40594-017-0058-3. [Google Scholar] [Crossref] 
  27. Firdaus, A. R., Wardani, D. S., Altaftazani, D. H., Kelana, J. B., & Rahayu, G. D. S. (2020, October). Mathematics learning in elementary school through engineering design process method with STEM approach. Journal of Physics: Conference Series, 1657(1), 1-6. https://iopscience.iop.org/article/10.1088/17426596/1657/1/012044meta. [Google Scholar]
  28. Gencer, A. S., Doğan, H., Bilen, K. ve Can, B. (2019). Bütünleşik STEM eğitimi modelleri. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 45, 38-55. https://dergipark.org.tr/en/pub/pauefd/issue/41649/433453. [Google Scholar]
  29. Gezer, M. (2021). Örneklem seçimi ve örnekleme yöntemleri. İçinde B. Çetin, M. İlhan ve M. G. Şahin (Ed.). Eğitimde arştırma yöntemleri: temel kavramlar, ilkeler ve süreçler (s. 134-162). Ankara: Pegem Akademi. [Google Scholar]
  30. Gül, K. S., & Taşar, M. F. (2020). A review of researches on STEM in preservice teacher education. Elementary Education Online, 19(2), 515-539. https://doi.org/10.17051/ilkonline.2020.689682. [Google Scholar] [Crossref] 
  31. Gülhan, F. & Şahin, F. (2018). Activity implementation intended for STEAM (STEM+ Art) education: Mirrors and light. Journal of Inquiry Based Activities, 8(2), 111-126. https://www.ated.info.tr/ojs-3.2.1-3/index.php/ated/article/view/29. [Google Scholar]
  32. Hacıoğlu, Y. ve Başpınar, A. (2020). Bir sınıf öğretmeni ve öğrencilerinin ilk STEM eğitimi deneyimleri. Karadeniz Sosyal Bilimler Dergisi, 12(22), 1-23. https://doi.org/10.38155/ksbd.690919. [Google Scholar] [Crossref] 
  33. Hakim, L. L., Sulatri, Y. L., Mudrikah, A. & Ahmatika, D. (2019). STEM project-based learning models in learning mathematics to develop 21st century skills. ITEEA Journal, 1-5. https://doi.org/10.4108/eai.19-10-2018.2281357. [Google Scholar] [Crossref] 
  34. Hallström, J., & Schönborn, K. J. (2019). Models and modelling for authentic STEM education: reinforcing the argument. International Journal of STEM Education, 6(1), 1-10. https://doi.org/10.1186/s40594-019-0178-z. [Google Scholar] [Crossref] 
  35. Herdem, K. ve Ünal, İ. (2018). STEM eğitimi üzerine yapılan çalışmaların analizi: Bir meta-sentez çalışması. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 48(48). https://doi.org/10.15285/maruaebd.345486. [Google Scholar] [Crossref] 
  36. Hiğde, E. (2018). Ortaokul 7. sınıf öğrencileri için hazırlanan STEM etkinliklerinin farklı değişkenlere yönelik etkisinin incelenmesi [Yayınlanmamış Doktora Tezi]. Aydın Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü, Aydın. [Google Scholar]
  37. Kanadlı, S. (2019). A meta-summary of qualitative findings about STEM education. International Journal of Instruction, 12(1), 959-976. https://files.eric.ed.gov/fulltext/EJ1201183.pdf. [Google Scholar]
  38. Kaya, A. ve Ayar, M. C. (2020). Türkiye örnekleminde STEM eğitimi alanında yapılan çalışmaların içerik analizi. İstanbul Aydın Üniversitesi Eğitim Fakültesi Dergisi, 6(2), 275-306. https://dergipark.org.tr/en/pub/iauefd/issue/57710/822443. [Google Scholar]
  39. Kertil, M., & Gurel, C. (2016). Mathematical modeling: A bridge to STEM education. International Journal of Education in Mathematics, Science and Technology, 4(1), 44-55. https://doi.org/10.18404/ijemst.95761. [Google Scholar] [Crossref] 
  40. Kim, G. S. & Choi, S. Y. (2012). The effects of the creative problem solving ability and scientific attitude through the science-based STEAM program in the elementary gifted students. Journal of Korean Elementary Science Education, 31(2), 216-226. https://doi.org/10.15267/keses.2012.31.2.216. [Google Scholar] [Crossref] 
  41. Kopcha, T. J., McGregor, J., Shin, S., Qian, Y., Choi, J., Hill, R. & Choi, I. (2017). Developing an integrative STEM curriculum for robotics education through educational design research. Journal of Formative Design in Learning, 1(1), 31-44. https://doi.org/10.1007/s41686-017-0005-1. [Google Scholar] [Crossref] 
  42. Korucu, A. T. ve Kabak, K. (2021). The effects of STEM and other innovative interdisciplinary practices on academic success, attitude, career awareness: A meta-synthesis study. Journal of Learning and Teaching in Digital Age, 6(1), 27-39. https://dergipark.org.tr/en/pub/joltida/issue/59433 /854103. [Google Scholar]
  43. Lesh, R. (2010). Tools, researchable issues & conjectures for investigating what it means to understand statistics (or other topics) meaningfully. Journal of Mathematical Modeling and Application, 1(2), 16-48.https://www.researchgate.net/publication/277194701_Tools_Researchable_Issues_Conjectures_for_Investigating_What_it_Means_to_Understand_Statistics_or_Other_Topics_Meaningfully. [Google Scholar]
  44. Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The role of mathematics in interdisciplinary STEM education. ZDM, 51(6), 869-884. https://doi.org/10.1007/s11858-019-01100-5. [Google Scholar] [Crossref] 
  45. Merriam, S. B. (2013). Nitel araştırma desen ve uygulama için bir rehber. (Çev. Ed. S. Turan). Ankara: Nobel Akademik Yayıncılık. [Google Scholar]
  46. Milli Eğitim Bakanlığı. (2016). STEM eğitimi raporu. Milli Eğitim Bakanlığı Yenilik ve Eğitim Teknolojileri Genel Müdürlüğü (YEĞİTEK). Ankara: MEB Yayıncılık. [Google Scholar]
  47. Mumcuoğlu Topaloğlu, Ç. (2020). STEM çalışmalarının ilköğretimde matematik fen bilimleri ve bilişim teknoloji derslerinde uygulanabilirliğine ait öğretmen görüşleri [Yayınlanmamış Yüksek Lisans Tezi]. Bahçeşehir Üniversitesi, İstanbul. [Google Scholar]
  48. Ocak, G. (2019). Bilimsel araştırmalarda kullanılan veri toplama yolları. İçinde G. Ocak (Ed.). Eğitimde bilimsel araştırma yöntemleri (s. 218-272). Ankara: Pegem Akademi. [Google Scholar]
  49. Pekbay, C., Saka, Y. ve Kaptan, F. (2020). Ortaokul öğrencilerinin STEM eğitim yaklaşımına dayalı olarak hazırlanan etkinlikler ile ilgili görüşleri: Yeşil mühendislik etkinlikleri. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 21(2), 840-857. https://doi.org/10.17679/inuefd.684513. [Google Scholar] [Crossref] 
  50. Prawvichien, S., Siripun, K. & Yuenyong, C. (2018). Developing teaching process for enhancing students’ mathematical problem solving in the 21st century through STEM education. AIP Conference Proceedings 1923(1), 1-6. https://doi.org/10.1063/1.5019560. [Google Scholar] [Crossref] 
  51. Pulat, N. (2020). Türkiye’ de yayımlanmış olan FeTeMM (STEM) etkinliklerinin alan yazın ışığında oluşturulmuş kriterler ile incelenmesi [Yayınlanmamış Yüksek Lisans Tezi]. Van Yüzüncü Yıl Üniversitesi Eğitim Bilimleri Enstitüsü, Van. [Google Scholar]
  52. Saldaña, J. (2013). The coding manual for qualitative researchers. Thousand Oaks, CA: Sage. https://doi.org/10.1108/QROM-08-2016-1408. [Google Scholar] [Crossref] 
  53. Sarı, D. ve Katrancı, M. (2020). İlkokul dördüncü sınıf öğrencilerinin STEM etkinlikleri hakkındaki görüşleri. Turkish Journal of Primary Education, 5(2), 119-132. https://dergipark.org.tr/en/pub/tujped/ issue/58028/794489. [Google Scholar]
  54. Seage, S. J., & Türegün, M. (2020). The effects of blended learning on STEM achievement of elementary school students. International Journal of Research in Education and Science, 6(1), 133-140. https://files.eric.ed.gov/fulltext/EJ1231349.pdf. [Google Scholar]
  55. Siew, N. M., Amir, N. & Chong, C. L. (2015). The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. SpringerPlus, 4(1), 1-20. https://doi.org/10.1186/2193-1801-4-8. [Google Scholar] [Crossref] 
  56. Siregar, N. C., Rosli, R., Maat, S. M., & Capraro, M. M. (2019). The effect of science, technology, engineering and mathematics (STEM) program on students’ achievement in mathematics: A meta-analysis. International Electronic Journal of Mathematics Education, 15(1), 1-12. https://doi.org/10.29333/iejme/5885. [Google Scholar] [Crossref] 
  57. Stohlmann, M. (2013). Integrated STEM model-eliciting activities: Developing 21st century thinkers. https://digitalscholarship.unlv.edu/ cgi/viewcontent.cgi?article=1008&context=aaas_pacific_conf. [Google Scholar]
  58. Stohlmann, M. S., Moore, T. J., & Cramer, K. (2013). Preservice elementary teachers' mathematical content knowledge from an integrated STEM modelling activity. Journal of Mathematical Modelling and Application, 1(8), 18-31. https://bu.furb.br/ojs/index.php/modelling/ article/view/3299/2476. [Google Scholar]
  59. Suh, H., & Han, S. (2019). Promoting sustainability in university classrooms using a STEM project with mathematical modeling. Sustainability, 11(3080), 1-22. https://doi.org/10.3390/su11113080. [Google Scholar] [Crossref] 
  60. Thomas, T. A. (2014). Elementary teachers’ receptivity to integrated science, technology, engineering, and mathematics (STEM) education in the elementary grades [Unpublished doctoral dissertation]. University of Nevada, Reno. [Google Scholar]
  61. Toma, R. B., & Greca, I. M. (2018). The effect of integrative STEM instruction on elementary students’ attitudes toward science. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1383-1395. https://doi.org/10.29333/ejmste/83676. [Google Scholar] [Crossref] 
  62. Uğraş, M. (2017). Okul öncesi öğretmenlerinin STEM uygulamalarına yönelik görüşleri. Eğitimde Yeni Yaklaşımlar Dergisi, 1(1), 39-54. https://www.researchgate.net/profile/Mustafa-Ugras. [Google Scholar]
  63. Uğraş, M. & Genç, Z. (2018). Investigating preschool teacher candidates' STEM teaching intention and the views about STEM education. Bartın Üniversitesi Eğitim Fakültesi Dergisi, 7(2), 724-744. https://doi.org/10.14686/buefad.408150. [Google Scholar] [Crossref] 
  64. Ültay, N., Emeksiz, N. ve Durmuş, R. (2020). STEAM yaklaşımına ilişkin örnek bir uygulama ve uygulama hakkında öğrenci görüşleri. Fen Bilimleri Öğretimi Dergisi, 8(1), 1-17. https://app.trdizin.gov.tr/ makale/TXpZeE9ESXhNUT09/steam-yaklasimina-iliskin-ornek-bir-uygulama-ve-uygulama-hakkinda-ogrenci-gorusleri. [Google Scholar]
  65. Weber, E., Fox, S., Levings, S. B. & Bouwma-Gearhart, J. (2013). Teachers’ conceptualizations of integrated STEM. Acad Exchange, 17(3), 47-53. http://www.rapidintellect.com/AEQweb/t5354j3.pdf. [Google Scholar]
  66. Wieselmann, J. R., Roehrig, G. H., & Kim, J. N. (2020). Who succeeds in STEM? Elementary girls' attitudes and beliefs about self and STEM. School Science and Mathematics, 120(5), 297-308. https://doi.org/10.1111/ssm.12407. [Google Scholar] [Crossref] 
  67. Yabas, D., Boyacı, H. S. & Çorlu, M. S. (2020). Mathematical modelling in STEM education: A math trail using LABSTARTM. In M. Ludwig, S. [Google Scholar]
  68. Jablonski, A. Caldeira, & A. Moura (Eds.), Research on Outdoor STEM Education in the Digital Age. Proceedings of the ROSETA Online Conference in June 2020 (pp. 31-38). Münster: WTM. [Google Scholar]
  69. Yasak, M. T. (2017). Tasarım temelli fen eğitiminde, fen, teknoloji, mühendislik ve matematik uygulamaları: Basınç konusu örneği [Yayınlanmamış Yüksek Lisans Tezi]. Cumhuriyet Üniversitesi, Sivas. [Google Scholar]
  70. Yıldırım, B. ve Altun, Y. (2015). STEM eğitim ve mühendislik uygulamalarının fen bilgisi laboratuvar dersindeki etkilerinin incelenmesi. El-Cezeri Fen ve Mühendislik Dergisi, 2(2), 28-40. https://dergipark.org.tr/ en/pub/ecjse/issue/4899/67132. [Google Scholar]
  71. Yıldırım, B., & Sidekli, S. (2018). STEM applications in mathematics education: the effect of STEM applications on different dependent variables. Journal of Baltic Science Education, 17(2), 200. http://acikerisim. mu.edu.tr/xmlui/bitstream/handle/20.500.12809/1701/Sidekli.pdf?sequence=1&isAllowed=y [Google Scholar]
  72. Yıldırım, H. ve Gelmez Burakgazi, S. (2020). Türkiye’de STEM eğitimi konusunda yapılan çalışmalar üzerine bir araştırma: Meta-Sentez çalışması. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 50, 291-314. https://doi.org/10.9779/pauefd.590319. [Google Scholar] [Crossref] 
  73. Zengin, N., Kaya, G. ve Pektaş, M. (2020). STEM temelli araştırmalarda kullanılan ölçme ve değerlendirme yöntemlerinin incelenmesi. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 40(2), 329-355. http://www.gefad.gazi.edu.tr/en/pub/issue/56462/698830. [Google Scholar]